2505 - I2P(II)2022_Yang_mid1 Scoreboard

Time

2022/04/08 13:20:00 2022/04/08 15:30:00

Clarification

# Problem Asker Description Reply Replier Reply Time For all team

# Problem Pass Rate (passed user / total user)
10990 cheat sheet
13463 Pre&Postorder 2 BTs

10990 - cheat sheet   

Description

Linked list

typedef struct _Node {
    int data;
    struct _Node *next;
} Node;

 

/* print the content of the linked list.*/

void printList(Node *head)
{
    Node *temp;
    for(temp=head; temp!=NULL; temp=temp->next) {
        printf("%d ", temp->data);
    }
}

/*Insert a node after the node pointed by nd.

Return 1 if insertion succeeds.
Otherwise, return 0.*/

int insertNode(Node* nd, int data)
{
    if (nd != NULL) {

        Node* temp = (Node*)malloc(sizeof(Node));
        temp->data = data;
        temp->next = nd->next;
        nd->next = temp;
        return 1;
    }
    return 0;
}

 

/*Delete a node after the node pointed by nd.

Return 1 if insertion succeeds. 

Otherwise, return 0.*/

int deleteNode(Node* nd)
{
    if (nd != NULL) {
        Node* temp = nd->next;
        if (temp != NULL) {
            nd -> next = temp->next;
            free(temp);
            return 1;
        }
    }
    return 0;
}

 

Binary tree

typedef struct _node {
     int data;
     struct _node *left, *right;
} BTNode;

 

Tree traversal

  • Pre-order: visit root, left subtree, and right subtree
  • In-order: visit left subtree, root, and right subtree
  • Post-order: visit left subtree, right subtree, and root

 

Expression order

  • Prefix:  operator, left operand,and right operand
  • Infix:  left operand, operator, and right operand
  • Postfix: left operand, right operand, and operator

 

Syntax tree

The internal nodes are operators, and the leaves are operands.

Recursive evaluation of prefix expression

/*It is a pseudo code */

int evalBoolExpr(){

char c = getchar();

If c is an operator

   op1 = evalBoolExpr();

   op2 = evalBoolExpr();

   return op1 c op2;

Else if c is a variable

   return the value of c;

}

Grammar of infix expression with parenthesis

  • EXPR = FACTOR| EXPR OP FACTOR
  • FACTROR = ID | (EXPR)

 

/*Suppose expr[] is an array of expression and pos is the current position, which initially is strlen(expr)-1. */

/*-------------------------------------*/

BTNode* makeNode(char c)
{
    int i;
    BTNode *node = (BTNode*)malloc(sizeof(BTNode));
    set node->data
    node->left = NULL;
    node->right = NULL;
    return node;
}

 

/*-------------------------------------*/

BTNode* FACTOR()
{
    char c;
    BTNode *node = NULL;
    if (pos>=0) {
        c = expr[pos--];
        if (c is an ID) {
            node = makeNode(c);
        } else if (c==‘)’) {
            node = EXPR();
            if(expr[pos--]!= '(') {
                printf("Error!\n");
                freeTree(node);
            }
        }
    }
    return node;
}

 

/*-------------------------------------*/

BTNode* EXPR()
{

    char c;

    BTNode *node = NULL, *right=NULL;

    if (pos>=0) {

        node = right = FACTOR();

        if (pos>0) {

            c = expr[pos];

            if (c is an operator) {

                node = makeNode(c);

                node->right = right;

                pos--;

                node->left = EXPR();

            }

        }

    }

    return node;

}

Input

Output

Sample Input  Download

Sample Output  Download

Tags




Discuss




13463 - Pre&Postorder 2 BTs   

Description

You are given a preorder and a postorder traversal sequences.

Please tell me how many possible trees can be constructed from them.

 

Sample 1:

Preorder: 1 2 3
Postorder: 3 2 1

 

Sample 2:

Preorder: 3 1 2
Postorder: 1 2 3

Input

The first line contains an integer N, 1 <= N <= 30, representing that the possible binary trees consist of N nodes, each with a unique ID.

The second line contains N integers, giving the preorder traversal sequence.

The third line contains N integers, giving the postorder traversal sequence.

 

Limit:

Testcases 1~5 : N <= 10.

Testcases 6~9 : N <= 20.

Testcase     10 : N <= 30.

Output

Output the number of all possible binary trees that can be constructed from the given sequences.

Remember to add a new line in the end.

Sample Input  Download

Sample Output  Download

Tags




Discuss